Viral-mediated vision rescue of a novel AIPL1 cone-rod dystrophy model.
نویسندگان
چکیده
Defects in aryl hydrocarbon receptor interacting protein-like1 (AIPL1) are associated with blinding diseases with a wide range of severity in humans. We examined the mechanism behind autosomal dominant cone-rod dystrophy (adCORD) caused by 12 base pair (bp) deletion at proline 351 of hAIPL1 (P351Δ12) mutation in the primate-specific region of human AIPL1. Mutant P351Δ12 human isoform, aryl hydrocarbon receptor interacting protein-like 1 (hAIPL1) mice demonstrated a CORD phenotype with early defects in cone-mediated vision and subsequent photoreceptor degeneration. A dominant CORD phenotype was observed in double transgenic animals expressing both mutant P351Δ12 and normal hAIPL1, but not with co-expression of P351Δ12 hAIPL1 and the mouse isoform, aryl hydrocarbon receptor interacting protein-like 1 (mAipl1). Despite a dominant effect of the mutation, we successfully rescued cone-mediated vision in P351Δ12 hAIPL1 mice following high over-expression of WT hAIPL1 by adeno-associated virus-mediated gene delivery, which was stable up to 6 months after treatment. Our transgenic P351Δ12 hAIPL1 mouse offers a novel model of AIPL1-CORD, with distinct defects from both the Aipl1-null mouse mimicking LCA and the Aipl1-hypomorphic mice mimicking a slow progressing RP.
منابع مشابه
Gene therapy for retinitis pigmentosa and Leber congenital amaurosis caused by defects in AIPL1: effective rescue of mouse models of partial and complete Aipl1 deficiency using AAV2/2 and AAV2/8 vectors.
Defects in the photoreceptor-specific gene encoding aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) are clinically heterogeneous and present as Leber Congenital Amaurosis, the severest form of early-onset retinal dystrophy and milder forms of retinal dystrophies such as juvenile retinitis pigmentosa and dominant cone-rod dystrophy. [Perrault, I., Rozet, J.M., Gerber, S., Ghazi, I.,...
متن کاملGene therapy using self-complementary Y733F capsid mutant AAV2/8 restores vision in a model of early onset Leber congenital amaurosis.
Defects in the photoreceptor-specific gene aryl hydrocarbon receptor interacting protein-like 1 (Aipl1) are associated with Leber congenital amaurosis (LCA), a childhood blinding disease with early-onset retinal degeneration and vision loss. Furthermore, Aipl1 defects are characterized at the most severe end of the LCA spectrum. The rapid photoreceptor degeneration and vision loss observed in t...
متن کاملA novel GUCY2D mutation in a Chinese family with dominant cone dystrophy
PURPOSE To describe the clinical and genetic findings in a Chinese family with autosomal dominant cone dystrophy (adCOD). METHODS One family was examined clinically, and genomic DNA was extracted from venous blood of all participants. Genotyping and haplotyping analysis was performed on the known genetic loci for adCOD and autosomal dominant cone-rod dystrophies (adCORD) with a panel of polym...
متن کاملAIPL1, A protein linked to blindness, is essential for the stability of enzymes mediating cGMP metabolism in cone photoreceptor cells.
Defects in the photoreceptor-specific gene encoding aryl hydrocarbon receptor interacting protein like-1 (AIPL1) are linked to blinding diseases, including Leber congenital amaurosis (LCA) and cone dystrophy. While it is apparent that AIPL1 is needed for rod and cone function, the role of AIPL1 in cones is not clear. In this study, using an all-cone animal model lacking Aipl1, we show a light-i...
متن کاملIdentification of a Novel Mutation in CNNM4 Gene in an Iranian Family with Jalili Syndrome
Background and Objectives: Jalili syndrome is a rare autosomal recessive genetic disorder, which so far, only 33 families with this disorder have been reported worldwide. Patients with this disease simultaneously develop cone-rod retinal dystrophy (CRD) and amelogenesis imperfecta (AI). In this study, a mutation causing Jalili syndrome, was investigated in an Iranian family. Case Report: The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 24 3 شماره
صفحات -
تاریخ انتشار 2015